DETERMINATION OF THERMAL DIFFUSIVITY
FROM EXPERIMENTAL DATA

E. A. Artyukhin UDC 536.24.01

An algorithm is discussed for determining the temperature dependence of the thermal diffu-
sivity from thermocouple measurements at one or more points within a body,

Various stationary and nonstationary methods have been developed [1] for determining the tempera-
ture dependence of the thermophysical characteristies of materials, Most of the existing methods are
based on an analytic solution of very simple heat-econduction problems, which imposes certain restrictions
on their use, Stationary methods are very time consuming, since a separate experiment is generally re-
quired to obtain a single point on the curve for a thermophysical coefficient as a function of temperature,
One nonstationary experiment can yield values of thermophysical properties over a wide range of tempera-
tures,

The most promising methods for determining thermophysical properties are methods based on solu-
tions of inverse nonstationary heat-conduction problems involving the thermophysical coefficients, In
this case the temperature dependence of the thermophysical characteristics of a material is determined
by using known boundary conditions and measured values of the temperature inside a body.

We consider the numerical determination of the polynomial dependence of the thermal diffusivity
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where g4 (r), q5(t), ¢(x},and fp (r) are known functions,

The criterion for choosing the unknown parameters ey, k=0, 1, ..., Nis written in the form
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where the 'Tp (r) are the calculated values of the temperature at the points Xp, P = 1, 2, ..., M where the
thermocouples are located, and the fy(r) are the measured temperatures at these same points.

The problem formulated is the simplest inverse problem involving the thermophysical coefficients
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and is of interest largely as an illustration of the method, In practice this formulation can be used to de-
termine the volumetric heat capacity of a material C(T') for a known thermal conductivity 4 (T). In this
case the heating problem is reduced to the form (1)-(4) by the Kirchhoff substitution
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The heating of a sample in the extremal problem (1)-(6) can be realized for boundary conditions
which vary arbitrarily with time.

We use the gradient method to minimize the functional (6). We calculate the derivatives of the func-
tional with respect to the parameters sought for,

M m | aT
o :2}:; [Tp(t)—fp(t)]wL(f)-—dr, k=0,1,..., N. ()
:3

oa Oa,

p=l g

Equation (7) involves N + 1 unknown functions @ = [BTp(T)/B agl, k=0, 1, ..., N. Todetermine
them we differentiate Eqs. (1)- (4) with respect to ¢|. We obtain N + 1 boundary-value problems
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We use the method of steepest descent, constructing the approximations by using the relation
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where r is the number of the iteration.

The descent parameter gy is determined from the condition that the functional (6) be minimum at
the (r + 1)-th iteration,
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Parameter B, canbe chosen explicitly, Suppose aﬁ k=0,1, ..., N)is changed by -—Br(al/aaks,
Then the function T (x, 7) changes by dr(x, 7). Neglecting second-order quantities we obtain from Egs.
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Problem (12)~(14) is linear in 3,.. Therefore we can write
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TABLE 1, Values of the Functional I and the Coefficients a,and
ay Determining the Polynomial

0 1 30 55
I 0,469-10-1 0,1826.10-3 0,4616.10~7 «eo | 0,7628.10-0
a, 0,5 0,8567 0,8011 -+ | 0,79999
a, 0,2 0,2726 0,3960 ... 1-0,39999

Hence, since it is necessary that or* *1/a By = 0, we obtain
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The iterative process is constructed in the following way: The zero approximation of the required
parameters is specified and problem (1)~{4) is solved. Using the calculated temperature distribution prob-
lem (8)-(10) is solved N + 1 times and the gradient of the functional is calculated from Eq. (7). The fune-
tion Jp(x, 7) is determined from (12)-(14) and the depth of descent 3, is calculated. After this the new
approximation is found from Eq. (11) and used for the next iteration,

The algorithm described above was programmed in ALGOL for a BESM-6 computer. An implicit
boundary-value problem approximation scheme was used with the net

o={x,=hi, i=0,1, ..., m v=Atj, j=0, 1, ..., m}
(cf. 2]).

The results of a calculation to illustrate the method are shown in Table 1. For an a priori known
function a(T) = 0,8 + 0.4 T the temperature distribution was obtained in an infinite plate of thickness b =1
for the following boundary conditions: ‘
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The temperature at x =b was used as input data for the regeneration of «(T). The calculation was
performed for an n X m = 50 X 50 net and required about 15 min,

No particular difficulty is involved in extending the present method to a region with moving boundar-
ies. Similarly an algorithm can be constructed to determine another coefficient in the heat-conduction
equation,

It should be noted that the a priori specification of the degree of the regenerating polynomial is not a
particularly stringent restriction,

The results of processing the experimental data show that the temperature dependence of the thermo-
physical characteristics of various materials is adequately approximated by polynomials of no higher de-
gree than the third,

Criterion (6) can be used when the input temperatures are known exactly, If the input data are in
error it is necessary to use the principle of discrepancy
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“p (r) is the mean square deviation of the input temperatures at the points x = xp. We note that in a real
experiment the degree of the polynomial sought for can also be chosen from condition (16).
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NOTATION

«(T), thermal diffusivity; T, temperature; x, coordinate; 7, time; ¢(x), initial temperature dis-
tribution; ey, polynomial coefficient; fp(r), input temperatures; y, model temperature; A(T), thermal
conductivity; I, functional; 6, error of input data; q, heat flux or temperature on the boundary of the
region,
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